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Abstract

Bitcoin exchanges function like banks, securely holding their customers’ bitcoins on their behalf.
Several exchanges have suffered catastrophic losses with customers permanently losing their savings. A
proof of solvency demonstrates that the exchange controls sufficient reserves to settle each customer’s
account. We introduce Provisions, a privacy-preserving proof of solvency whereby an exchange does
not have to disclose its Bitcoin addresses; total holdings or liabilities; or any information about its cus-
tomers. We also propose an extension which prevents exchanges from colluding to cover for each other’s
losses. We have implemented Provisions and show that it offers practical computation times and proof
sizes even for a large Bitcoin exchange with millions of customers.

1 Introduction

Digital currencies enable transactions that are electronically authorized, cleared and settled. After decades
of research [10, 8, 2, 29] and several failed business ventures attempting to establish a digital currency, Bit-
coin [27] was proposed and deployed in 2009. While still in its infancy, Bitcoin has achieved unprecedented
success, enjoying a multi-billion dollar market capitalization and deployment by large retailers. Bitcoin
transactions can be executed at any time by any device in the world with low (sometimes zero) fees.

Users can maintain security of their assets by managing the private keys used to control them. However,
managing cryptographic keys is difficult for many users [16]. Equipment failure, lost or stolen devices,
or Bitcoin-specific malware [22] could all result in the loss of one’s holdings. Many users prefer to keep
their holdings with online exchanges for a simple user experience similar to online banking—e.g., with
passwords, account recovery, velocity limits and customer support. Exchanges, as their name suggest, also
provide conversion services between bitcoin! and other currencies. Customers can ‘withdraw’ by instructing
the exchange to send the stored bitcoin to a Bitcoin address for which they manage the private key.

* An extended abstract of this work appeared at ACM CCS, 2015.
fCorresponding author, jbonneau@cs.stanford.edu.
!Following convention, we refer to the protocol as ‘Bitcoin’ and the units of currency as ‘bitcoin’ or B.



Unfortunately, storing assets with an exchange leaves users vulnerable to the exchange being hacked
and losing its assets. One of the most notorious events in Bitcoin’s short but storied history is the collapse
and ongoing bankruptcy of the oldest and largest exchange, Mt. Gox, which lost over US$450M in customer
assets. A number of other exchanges have lost their customers’ Bitcoin holdings and declared bankruptcy
due to external theft, internal theft, or technical mistakes [26].

While the vulnerability of an exchange to catastrophic loss can never be fully mitigated, a sensible
safeguard is periodic demonstrations that an exchange controls enough bitcoins to settle all of its customers’
accounts. Otherwise, an exchange which has (secretly) suffered losses can continue operating until the
net withdrawal of Bitcoin exceeds their holdings. Note that while conventional banks typically implement
fractional reserve banking in which they only retain enough assets to cover a fraction of their liabilities, the
Bitcoin community is skeptical of this approach and exchanges are generally expected to be fully solvent at
all times.

A rudimentary approach to demonstrating assets is simply to transfer them to a fresh public key. Mt.
Gox did so once in 2011 in the face of customer skepticism, moving over B420k (then worth over US$7 M)
in a single large transaction. However, this demonstration exposed confidential information, such as the size
of Mt. Gox’s business and the Bitcoin addresses they controlled. It was never repeated.

More importantly, a proof of reserves without a corresponding proof of liabilities is not sufficient to
prove solvency. A proof of liabilities might consist of an audit by a trusted accountant, as done for example
by Coinbase? and Bitstamp®. This might be improved by allowing users to independently verify they are in
the dataset seen by the auditor, a step taken by Kraken* and OKCoin’.

A cryptographic proof of liabilities, verifiable by any party with no trusted auditor, was first proposed
by Maxwell [33]. However, this initial proposal leaked information about the number and size of customer
accounts (see Section 2.2). These privacy issues (as well as those inherent to a simple public proof of assets)
have been cited by some exchanges (e.g., Kraken®) as a reason to use a trusted auditor instead.

In this paper we propose Provisions, a cryptographic proof of solvency scheme with the following
properties:

no information is revealed about customer holdings

the value of the exchange’s total holdings is kept secret

the exchange maintains unlinkability from its Bitcoin address(es) through an anonymity set of arbi-
trary size

multiple exchanges performing Provisions contemporaneously can prove they are not colluding

While the Maxwell proof of reserves requires only a slightly modified Merkle tree, which is a data struc-
ture well known by Bitcoin community, Provisions employs somewhat heavier cryptography not found in
Bitcoin itself—e. g., additively homomorphic Pedersen commitments and zero-knowledge proofs. However,
we demonstrate that Provisions is efficient enough in practice even for the largest of today’s exchanges to
conduct a daily proof of solvency. The protocol is computable by a single machine in a few hours and yields
proofs that are less than 20 GB.

We also consider it crucial that our protocol requires no trusted setup (or “common reference string”),
consistent with the de-centralized nature of Bitcoin. More powerful cryptographic tools, such as zero-
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knowledge SNARKS [4], might offer shorter proofs or improved anonymity, but require a trusted setup
which may make them less palatable to the Bitcoin community.

The need to establish the trustworthiness of Bitcoin exchanges should continue to increase as Bitcoin
exchanges serve more customers and larger deposits. There are also hints that proofs of solvency will even-
tually become legally required in some jurisdictions: in September 2015 the U.S. Conference of State Bank
Supervisors issued a proposed regulatory requirement which would require Bitcoin exchanges to demon-
strate solvency, with cryptographic proofs of solvency the preferred method [13]. We believe the practicality
and strong privacy guarantees of Provisions make it a good candidate to fulfill this need. We hope it will
become the norm for exchanges to regularly compute a Provisions proof of solvency which might go a long
way to restoring confidence in the Bitcoin ecosystem.

Limitations It is important to recognize that no proof of solvency (or any other type of audit) is future
proof, as exchanges can still be hacked at any time. Likewise, proving control of a quantity of bitcoin does
not guarantee the exchange itself will behave honestly in the future. It may simply abscond with all of its
customers funds after completing a Provisions proof. The best we can hope for is efficient enough proofs
to enable frequent and continual monitoring of the financial health of exchanges to quickly detect the loss
of funds, which Provisions enables.

Provisions also requires customers to check individually that their balance has been included in the
proof of liabilities. This appears to be a fundamental limitation given our privacy goals that a user’s account
balance is not revealed to any other party. On the positive side, as long as some users check and the exchange
cannot predict which users will check, it runs a high risk of detection if it cheats (see Section 9.2).

Provisions is designed to prove ownership of accounts with a full public key on the blockchain. It
cannot prove ownership of unused pay-to-pub-key-hash, unused pay-to-script-hash addresses, or complex
multisig addresses. Removing this limitation is an interesting challenge for future work (see Section 4.2).

2 Background

We assume the reader is familiar with Bitcoin [27]. Bonneau et al. [5] provide an extensive survey of Bitcoin,
although a deep understanding is not needed for understanding Provisions. The pertinent features are that
each unit of bitcoin is usually redeemable by a specified public key’ and this information is maintained in a
public data structure called the blockchain.

Note that the blockchain is an ever-growing log of transactions. Any proof of solvency will be inherently
bound to a single block, representing one snapshot of the Bitcoin ledger. In the remainder of the paper we
leave implicit that the proof is valid for a specific block number ¢. It is also possible for the blockchain to fork
(or “re-org”) in which case an apparently-valid proof at block £ may not be valid in the final block number
t. As is standard with Bitcoin transactions, the defense against this is to wait until a block is confirmed with
high probability, typically after observing that 6 followup blocks have been published.

Bitcoin public keys which hold funds are interchangeably called accounts or addresses. We note here
that while we designed Provisions with Bitcoin in mind as it is the dominant cryptocurrency today, it could
easily be ported to similar cryptocurrencies which have the above properties.

A proof of solvency consists of two components. In the first, the proof of liabilities, the exchange
commits to the total quantity of bitcoin it owes to all of its users. In the second, the proof of assets, the

"Technically, bitcoins are redeemable by a specific transaction script which can encode various spending conditions, though in
the vast majority of cases this is simply a public key signature and we will discuss Bitcoin as if this is the only method.
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Figure 1: The Merkle tree from the Maxwell protocol [33] for proof of solvency. When a customer desires
to verify their account (e.g. dashed line node), only two nodes need to be sent to the customer (bold line
nodes).

exchange commits to the total value of bitcoin it has signing authority over. If the latter committed value is
greater than or equal to the former, the exchange is considered solvent.

2.1 Exchange structure and holdings

Nearly all large Bitcoin exchanges operate by pooling customers’ funds into a small number of large ac-
counts. Typically for security reasons the keys for some of these accounts are kept on offline computers
or in hardware security modules, requiring human action to authorize transactions (commonly called cold
storage).

One might ask why an exchange does not simply maintain a separate Bitcoin address for each customer,
enabling direct monitoring by each user of their funds on the public blockchain; a simple mechanism that
eschews the need for a more complicated cryptographic proof of solvency. By itself, this scheme is not
secure, as a malicious exchange might attempt to convince two users with the same balance that a single
address is holding funds for both of them (a variation of the clash attack [32] discussed later).

This model also has several key practical shortcomings. First, it prevents simple division of money into
hot and cold storage. Current exchanges can exist with a limited amount of money in more vulnerable hot
storage because, on aggregate, the number of withdrawals in a given day is typically only a small amount of
total holdings. This is similar to a large offline bank which does not carry enough cash in ATMs to cover all
customer accounts, keeping substantial assets in secure (but less accessible) storage.?

Second, pooling assets means that transfers between customers can be efficiently settled by changing
each customers’ account balance without executing a transaction on the Bitcoin blockchain (incurring a
transaction fee and a wait of around an hour for confirmation). Similarly, two exchanges can aggregate mul-
tiple transactions between pairs of their customers into a single settlement payment (referred to as netting).
Minimizing reliance on the blockchain (especially for small transfers) is a key benefit of exchanges. By

8Executing Provisions will require computation using all of an exchange’s private keys, including those for assets in cold
storage. However, this can be done with human intervention at a predictable time and does not require network access to the cold
storage.



contrast, maintaining a separate Bitcoin account for each customer requires “hitting the blockchain” with
every transaction.

Finally, although it is not typically advertised, exchanges offer a significant privacy benefit to users as
pooling funds ensures that it is not easy for outside observers to link deposits and withdrawals to the same
individual [24].

Thus, we consider the pooled assets model likely to persist and we have designed Provisions to work
in this model. If we combine these factors with maintaining the privacy of an exchange’s addresses—
proving that one owns (i.e., knows) a private key without disclosing which—zero-knowledge proofs appear
inescapable.

2.2 Maxwell’s proof of liabilities

Maxwell proposed a protocol (summarized by Wilcox [33]) that enables an exchange to prove its total
liabilities while allowing users to verify that their accounts are included in this total. The exchange constructs
a binary Merkle hash tree [25] where each leaf node contains a customer’s balance, as well as the hash of the
balance concatenated with the customer id and a fresh nonce (i.e., a hash-based commitment). Each internal
node stores the aggregate balance of its left child (/c) and right child (rc), as well as the hash of its aggregate
balance concatenated with the hash of its left and right children. The root node stores the aggregate of all
customers’ balances, representing the total liabilities, and the exchange broadcasts the root node. This is
illustrated in Figure 1.

When a customer wants to verify that their balance is included in the total liabilities declared by the
exchange, it is sufficient to send to the customer only part of the hash tree in order to perform the verification.
Specifically, the exchange sends to the customer her nonce and the sibling node of each node on the unique
path from the customer’s leaf node to the root node. The other nodes on the path, including the leaf node
itself, do not need to be sent to the customer because they will have sufficient information to reconstruct
them. The customer eventually accepts that their balance is included iff their path terminates with the same
root broadcast by the exchange.

While elegant, this protocol does not hide the value of the exchange’s total liabilities which is published
in the root node. While a rough sense of this value may be public knowledge, the exact value may be sensitive
commercial data. Furthermore, regular proofs will reveal precise changes in the exchange’s holdings.

This protocol also leaks partial information about other customers’ balances. For example, if a simple
balanced tree is used then each customer’s proof reveals the exact balance of the sibling account in the tree
(although the account holder remains anonymous). More generally, each sibling node revealed in a given
users’ path to the root node reveals the total holdings of each customer in that neighboring subtree. This
could be mitigated somewhat by using an unbalanced tree so it is not immediately clear how many customers
are in any neighboring subtree, but the protocol inherently leaks some information. Provisions removes this
problem entirely, revealing no information about any users’ assets beyond the fact that the total is less than
the exchange’s proven reserves.

2.3 Proof of assets

Once an exchange establishes its total liabilities, it must prove it owns sufficient bitcoin to match (or exceed)
its liabilities. This proof of assets together with the proof of liabilities forms a proof of solvency. Maxwell’s
proof of assets does not preserve privacy. Instead, the exchange publicly demonstrates control of a set of
addresses holding at least as much bitcoin as the exchange’s total liabilities. This demonstration of control
might involve moving a challenge amount of bitcoin from each account or signing a challenge message with



the private key associated with each address. Exchanges may be reluctant to do so for privacy and security
concerns (revealing their internal division of funds between accounts).

In Provisions, we enable the exchange to prove ownership of an anonymous subset of addresses pulled
from the blockchain. The total quantity of bitcoin across these addresses can then be determined, without
being revealed, and proved to be equal or greater than the exchange’s total liabilities.

2.3.1 Control vs. ownership

Any proof of assets, including Provisions, faces the inherent problem that the ability to use the signing key
of an address does not necessarily imply ownership of it. A malicious exchange may collude with one or
more bitcoin holders who agree to use their accounts to cover the exchange’s liabilities. However, these
partners may have no intention of ever making their holdings available to the exchange’s customers.

An exchange might try consolidating its holdings into a single address to demonstrate that either ex-
change or the colluder is risking their bitcoin by placing it under the other’s control. However, there is
no guarantee that the single address does not implement a shared access structure by a threshold signature
scheme [19].

This problem is fundamental, as no system can cryptographically prove its intentions to return some-
thing of value to a given user if requested. This customer request will be made without cryptographic
authentication (e.g., relying only on password authentication) because by assumption exchange customers
are unwilling or unable to manage cryptographic keys. Otherwise, assets could be proved by sending each
customer’s bitcoins to a 1-out-of-2 multisig address redeemable by either the exchange or the user [33],
providing a window for each customer to redeem their coins if desired. Again, we assume this is impractical
for the majority of exchange customers.

2.3.2 Collusion attacks

Another potential vulnerability is that a cabal of two or more malicious exchanges might collude by using
their own assets to participate in each other’s proof of assets, making each exchange appear to control the
total amount controlled by the cabal. With a public proof of assets, this would be detected if done simul-
taneously (because the same addresses would appear in multiple exchanges’ proofs) while the transaction
graph might reveal if assets are simply being moved around in a shell game.

In Provisions, because the exchange’s addresses are kept confidential, detection of this attack becomes
more challenging. However, in Section 7 we show an extension to the basic Provisions protocol which
enables exchanges to prove that they are not using the same assets as other exchanges running the protocol.
To do so, they publish an additional value which is unlinkable to their real Bitcoin address, yet is a deter-
ministic function of (and requires knowledge of) their private key. Thus, if two exchanges attempt to use the
same bitcoin address in two different solvency proofs, the re-use can be detected.

This extension imposes a small performance cost (see Section 10.4) and a small impact on the exchange’s
privacy as it reveals the number of addresses to which the exchange knows the private key (see Section 9.1).
Thus we leave it as an extension for now, as it will only become beneficial when multiple exchanges are
implementing Provisions and are willing to synchronize their proofs.

3 Protocol overview

The objective of Provisions is to enable an exchange £ to publicly prove that it owns enough bitcoin to
cover all its customers’ balances such that (1) all customer accounts remain fully confidential, (2) no account



contains a negative balance, (3) the exchange does not reveal its total liabilities or total assets, and (4) the
exchange does not reveal its Bitcoin addresses. Provisions consists of three main protocols:

Protocol 1 - Proof of assets. In this protocol, the exchange compiles a large anonymity set of public
keys PK corresponding to addresses on the Bitcoin blockchain. The exchange possesses the private keys to
a subset of the public keys in PK. Next, the exchange creates a commitment to its total assets and proves in
zero-knowledge that the sum of balances held by the public keys it owns (i.e. public keys for which it knows
the secret key) is equal to the committed value. This is done without revealing which public keys it owns.

Protocol 2 - Proof of liabilities. In this protocol, the exchange publishes a commitment to each user’s
account balance. These committed values are summed homomorphically to produce a commitment to the
exchange’s total liabilities. The exchange enables each user to privately verify that the commitment to their
balance is correct. It also proves that every committed balance is a small positive integer.

Protocol 3 - Proof of solvency. Using the commitments to its total assets and liabilities produced by
the above two protocols, the exchange will homomorphically compute a commitment to their difference and
prove in zero-knowledge that this final commitment is a commitment to zero. This will prove that the total
liabilities is exactly equal to the total assets (or, via a minor modification, that it is strictly less than the total
assets).

3.1 Preliminaries & notation

Public parameters. We let g and h be fixed public generators of a group G of prime order q. Our imple-
mentation uses the elliptic curve secp256k1 [9] as the group G this is the group used for Bitcoin ECDSA
signatures. Note that this allows us to work with existing Bitcoin public and private keys, although we
do not actually perform any ECDSA signatures. While implemented over elliptic curves, we use the more
conventional multiplicative notation (e.g., y = ¢” instead of Y = zG).

We stress that Provisions requires no trusted setup, so that no party (or group of parties) can cause the
system to malfunction.

Bitcoin balance lookups. We assume that the Bitcoin blockchain is universally agreed upon and all
parties can use it to compute the quantity of bitcoin owned by each address. More precisely, for a Bitcoin
public key y € G we use bal(y) to denote the balance associated with y. We assume bal(y) is an integer
between 0 and MaxBTC for all 5. We can represent any bitcoin account with MaxBTC = 25! —the rules
of Bitcoin limit the total currency supply to 21M B, each divisible into a maximum of 108 atomic units
called satoshis. Note that satoshis are the true units of currency in Bitcoin. Setting B1 = 10® satoshis is
a convention to provide a more human-friendly accounting unit. In the remainder of this paper when we
speak of account balances we will always be working with satoshis.

Pedersen Commitments. Provisions makes heavy use of Pedersen commitments [30]. The commit-
ment to a message m € Zj, is defined as com = g™ - h” where g and h are fixed public elements of G and
the quantity r is chosen at random in Z,. The generators g and h are chosen once in a way that ensures no
one knows their relative discrete logarithm. Specifically, we use the standard g from secp256k1 and derive
h deterministically by hashing the string Provisions. Recall that Pedersen commitments are perfectly
hiding so that com reveals no information about m.

Non-Interactive Zero-Knowledge Proofs (NIZKP). Provisions requires a number of non-interactive
zero-knowledge proofs. In all cases, these can be adapted from basic X-protocols such as the Schnorr proof
of knowledge of a discrete logarithm [31] or the Chaum-Pedersen proof of representation of a Diffie-Hellman
tuple [12], using Fiat-Shamir [17] to compile into a non-interactive zero-knowledge protocol (NIZKP). If
one wishes to avoid the random oracle model, any alternative Y-protocol to NIZKP compilation [20] is
sufficient.



4 Proof of assets

We begin with Protocol 1 which lets the exchange £ generate a commitment to its total assets along with a
zero-knowledge proof that the exchange knows the private keys for a set of Bitcoin addresses whose total
value is equal to the committed value.

The exchange £ assembles a set of Bitcoin public keys

PKz{yl,...,yn}EG

corresponding to addresses on the blockchain that will serve as an anonymity set. Note that these must be
complete public keys and not Bitcoin addresses, which are typically hashes of public keys. We discuss this
limitation, as well as how to choose this set, in Section 10. We let x1,...,x, € Z, be the corresponding
secret keys so that y; = g™ fori =1,...,n.

Let S be the exchange’s own set of Bitcoin addresses for which it knows the private keys. The anonymity
set PK must of course be a superset of the exchange’s own Bitcoin addresses so that S € PK.

We use the booleans s; € {0, 1} to indicate which accounts the exchange controls in PK. We set s; = 1
whenever the exchange knows the private key z; for Bitcoin public key y; € PK. The exchange’s total

assets can then be expressed as
n

Assets = Z s; - bal(y;)
i=1

We assume bal(y;) > 0 for all . Finally, we define
b; = gbal(yi) fori=1,...,n.

Given the set PK, a verifier can easily compute all the b; for itself using information in the Bitcoin
blockchain.

4.1 Proof of assets >.-Protocol

The exchange publishes Pedersen commitments to each s; - bal(y;) for i € [1,n] by choosing a random
v; € Zq and computing
pi=b;"-h". (1)

A homomorphic addition of these commitments yields a Pedersen commitment Zassets to Assets:

n n

L pssets - = Hpi = H bfl -hYi = gAssetSh(Z?:l ;) . 2)
i=1 =1

It remains to prove in zero-knowledge that Zaesets is valid. That is, for all ¢ € [1, n]| we have s; € {0, 1}
and when s; = 1 the exchange knows the secret key x; € Z, for the public key ;. To prove this, £ publishes
a few additional values. For each i € [1, n] the exchange chooses a random ¢; € Z, and publishes

li =y;'h" €G 3)
which is a Pedersen commitment for s;. Equivalently, these /; can be written as

li = g™ h" )



Public data from blockchain: (y;, b;) fori € [1,n] and g, h
Verifier’s input from prover: (p;,l;) fori € [1,n]
Prover’s input: s; € {0, 1}, v;,t;,&; € Zg forie [1,n]

Protocol:
1. Fori e [1,n]

(1) u(2) u(g) u(4) iZq

(b) The prover sends to the verifier:

(a) Prover (£) chooses u

a; i b a;, " =Yy

(c) The verifier replies with a challenge c; & Zq

(d) Prover (€) replies with:

Ts, = ug + ¢ - S5,
Ty, = u§2) + ¢ - g,
Ty = ugg) +c; - t;,
Tz, = u§4) + ¢ - Ty,

(e) The verifier accepts if:

T‘Si
3

b hrvi ; pfzagl)
yi T2 0 a?

g%i Bt 2 lz(‘:iaz(‘g)

1 1
M _ put @ _ i pul?

3 NG
, az( ) = g% " hW

(response for s;)
(response for v;)
(response for ¢;)

(response for Z;)

(Verify statement (1))
(Verify statement (3))

(Verify statement (5))

(f) Run the protocol in Appendix B to prove knowledge of s, € {0,1} and v} € Z, satisfy-
ing (1). [the binding property of Pedersen commitments ensures that s; = 3; and v; = vg]

2. The verifier computes Zassets := | [;—; pi asin (2)

Protocol 1: Privacy-preserving proof of assets




which is a Pedersen commitment to the quantity x; - s; € Z,. By setting &; := x; - 5;, we can re-write (4) as
li = g"iht (5)

Now, to prove that Zaseets computed in (2) is a commitment to (a lower bound of) the exchange’s assets,
the exchange proves knowledge of quantities:

s;€{0,1} and w;,t;,&;€Zy forie[l,n] (6)

satisfying conditions (1), (3), and (5). This convinces the verifier that when s; = 1 the exchange knows the
private key x; € Z, for the public key y;. To see why, observe that dividing equation (3) by (5) proves that
when s; = 1 the exchange knows %; € Z, such that g% = y;, as required.

The exchange proves knowledge of the required values in (6) using Protocol 1. The protocol makes
use of a standard Y-protocol to prove that each s; is binary and known to the exchange. The protocol is
presented in Appendix B for completeness.

Protocol 1 can be made non-interactive using the Fiat-Shamir heuristic. It therefore suffices to prove

that the protocol is honest-verifier zero-knowledge, as shown in the following theorem:

Theorem 1. For public values g, h and (y;,b;, p;, ;) for i € [1,n], the X-protocol in Protocol 1 is an
honest-verifier zero-knowledge argument of knowledge of quantities

S; € {0, 1}, ’Ui,tz',.f}i € Zq fori € [l,n]
satisfying conditions (1), (3) and (5) for all i € [1,n].

The proof of Theorem 1 is given in Appendix C. As explained above, this proof of knowledge convinces
the verifier that Zassets, as computed in (2), is a commitment to (a lower bound of) the exchange’s total
assets. The proof is made non-interactive using the Fiat-Shamir heuristic. Since it is honest-verifier zero-
knowledge, it reveals nothing about the total assets, the s;, or the x;, as required.

Proof length. The proof size is linear in the size of the anonymity set n. We use the standard Schnorr
optimization so that, for each i € [1,n], the proof contains only two elements in G, namely (p;,l;), and
eight elements in Z,, namely the five elements (c;, 7, t;,7z,, Tv;) plus three additional elements in Z,
from the protocol in Appendix B. This is feasible even for large anonymity sets. We discuss practical
parameters in Section 10.

We can shrink the proof size by ~ 10% if we choose a single challenge value ¢ for all ¢ € [1,n].
However, we choose a different ¢; for each i € [1, n] so that the verifier can check the proof piecemeal, one
1 at a time.

4.2 Supported address types

Provisions does not support all address types which are possible in Bitcoin; it only supports addresses
which correspond to a single public key. This includes all pay-to-pubkey-hash (P2PKH) and some pay-to-
script-hash (P2SH) address, though for these addresses the public key itself will not be revealed until after
the address has first been used.® Thus, only addresses which have already been used at least once can be
utilized as part of the anonymity set.

° An exception is pay-to-pubkey transactions, which specify the public key upfront. Unfortunately (from the point of view of
Provisions), these transactions have been deprecated and are now rare.
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Bitcoin also supports more complicated address types. Each transaction output is technically represented
as a small script in a custom Bitcoin script language which can specify arbitrary conditions to redeem the
funds. Provisions can only prove the ability to spend from a script that specifies a single public key. The
most common case besides a single key are multisig addresses, which specify n keys of which £ must sign.
Extending Provisions to support multisig addresses is an interesting challenge for future work.

Using a more powerful proof system such as zk-SNARKSs [4], it would be possible to demonstrate the
ability to satisfy an arbitrary script by compiling a Bitcoin script interpreter circuit. However, this would
require a large and complex circuit which would be wasteful given that nearly all Bitcoin addresses conform
to one of a very small number of script types. A better design would likely be to compile specific SNARK
circuits corresponding to common script types, such as pay-to-pubkey-hash or multisig. Note that SNARKS,
which support proofs on any NP statement, can in principle prove a statement of the form “Either I know
a public key whose hash is h and I know the private key corresponding to this public key in which case a
is a commitment to the balance of the address h, or I don’t necessarily know the preimage of h and a is a
commitment to th value 0.” This would enable a proof of reserves including pay-to-pubkey-hash addresses
which have not yet been spent. Implementing such a statement efficiently using zk-SNARKSs is an important
future research direction.

5 Proof of liabilities

Protocol 2 enables the exchange £ to verifiably commit to its total liabilities and convince all clients that
their balances were included in the commitment.

To provide some intuition behind the design of Protocol 2, consider the mapping of real customers to
entries on LiabList. Each real customer should have an entry in LiabList (i.e., the mapping is a function)
and no distinct customers should be given the same entry (i.e., the mapping should be injective). If two
users have the same balance, a malicious £ might try to point both users to the same entry—in the voting
literature, this is called a clash attack [32]. To ensure an injective mapping, customers are provided an ID in
line (1d) which commits'® to unique information about the customer username; (which may include their
username, email address, and/or account number). The commitment is binding, preventing the exchange
from opening a CID to distinct data for different users. It is also hiding, preventing an adversary who knows
the username; of a potential customer from determining if that customer is in LiabList (or if a user is known
to be a customer, which CID they correspond to).

We do not require the mapping to be surjective—& can always add fake users to the list, but we ensure
that doing so can only increase £’s apparent liabilities. It might be in £’s interest to include fake users with
a zero (or tiny) balance to obscure the total number of customers it truly has. However, we must ensure
that any included users (real or fake) can only add to the exchange’s total liabilities. That is, £ should not
be able include a negative balance to try to decrease its apparent liabilities. Since negative numbers do not
technically exist in modular arithmetic, the precise requirement is that when added together, the sum will
never exceed g, the order of the group G, which is ¢ ~ 226 for our group G =secp256k1.

To enforce this, £ provides a range proof (adapted from [23]) for each committed balance showing it is
from a ‘small’ interval between 0 and MaxBTC = 2°!. This ensures that an overflow will never occur as long
as the exchange has fewer than 22%° accounts. The range proof works by proving that the account balance
is at most 51 bits long by commiitting to the account balance bit-by-bit and proving that each bitis a 0 or 1.

0Unlike the other commitments used in Provisions, the commitment scheme used to produce CID; need only be binding and
hiding, not additively homomorphic. We use a simpler hash-based commitment scheme instead of Pedersen commitments.
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To verifiably commit to its liabilities, £ does:
1. Foreach customerC; : 1 <i < c:

(a) Represent each C;’s balance Balance; as an m-bit binary number (where m = [lg, MaxBTC]):
BinBaIancei = <$i,0, LTilye-- 71’i,m71>> (then Balancei = Z;aniolxi,k . Qk)
(b) Compute and publish a Pedersen commitment to each x; 1 in the group G using generators g and h:

z; T $
Zig =g "PhTE g < g

(c) Forevery i € [1, c] construct a proof of knowledge 7; for the statement:

for all k € [0, m — 1], the exchange & knows r; . € Zq and x; & € {0, 1} such that z; , = g®#-*h":k,

Notice that z; := Z:l

ky . .
o (2 k)(Q ) is a Pedersen commitment to C;’s balance.

Moreover, Ziabiities = ] [;_, 2 is a Pedersen commitment to the sum of all balances, which is &’s total
liabilities.

(d) Compute a fresh customer identifier CID; by committing C;’s username:

512

choose a nonce n; <~ {0,1}°"“ and compute

CID; := H(username;|n;)
where H is a collision-resistant hash function such as SHA-256
2. Publish the following list of liabilities LiabList of all customers’ tuples:
LiabList = (CID;, zi,0,..-,2i,m—-1, iy fori=1,... c.

Every client C;, for ¢ € [1, ¢], can verify that its balance is uniquely included in LiabList as follows:
1. Client C; logs in and is privately given (r;, n;).
2. The client recomputes CID; = H(username;|n;) and verifies that is correctly included in LiabList.
3. The client verifies its own balance as follows:
compute z; 1= H;";Ol(zi,k)@k) and verify that z; = g*P"®ip"i,
4. The client validates integrity of the remaining entries in LiabList by checking the proof 7; foralli = 1,...,c.
c

5. Finally, Client C; computes and outputs Ziapiiities = ] |;_; Zi-
In practice, the client C; need only do Steps (1)—(3). Steps (4) and (5) can be carried out by a public auditor (see Section 5.1).

Protocol 2: Privacy-preserving proof of liabilities
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This committed binary representation is homomorphically converted into an integer and homomorphically
summed.

The range proof in Step (1c) is the bulk of the proof size (see Section 10). We could have used more
efficient range proofs [6, 7], but making these protocols non-interactive using the Fiat-Shamir heuristic
requires that we use a trusted setup.!! Our goal is to ensure that Provisions requires no trusted setup,
necessitating a range proof that require no trusted setup.

Another alternative is to use zero-knowledge succinct non-interactive arguments of knowledge (zk-
SNARKS) [4]. The proof would be significantly shorter (constant in the number of users) at the expense
of a large common reference string, the use of heavier cryptographic tools and a trusted setup. Realizing an
efficient proof of solvency using zk-SNARKS is an interesting challenge for future work.

The following theorem summarizes the security properties of Protocol 2. We do not provide a formal
proof here; the proof follows from the security of the Chaum-Pedersen proof of knowledge of a representa-
tion and the security properties of commitments built from collision-resistant hash functions.

Theorem 2.

e Protocol 2 is zero-knowledge in the following sense: there is an efficient simulator (in the random
oracle model) that can simulate all the entries in LiabList given only the number of users (but not
their balances or usernames).

e Protocol 2 is sound in the following sense: if a public auditor successfully executes verification steps
(4) and (5) then & proved knowledge of a pair (r, Liabilities) in Zg such that
Ziabiities = g2 eh"
where Liabilities is equal as an integer to (}.;_, a;) for some a; in the range [0, MaxBTC]. Moreover,
for every client C; that successfully executes verification step (3) we have that a; = balance;.

5.1 Customer verification

We assume that customers each check LiabList to verify the presence of their identifier CID; and the correct-
ness of their committed balance z;. A malicious £ which omits some customers will be detected if at least
one of those customers checks the proof of liabilities. This is an inherent limitation given our privacy goals
which require that only customers can tell if their balance has been included or not. This limitation applies
equally, for example, to Maxwell’s protocol. We discuss this further in Section 9.2. Fortunately the checks
required of each individual are quite lightweight. Each customer C; receives from & their username;, 7; and
n;. They then locate in LiabList, with a hint from &, their tuple:

<CID27 23,05+ -+ 5 Zi;m—1, 7Ti>

Using n;, they can open their commitment CID; and verify that it commits to username;. Next, using r; the
customer checks that z; is indeed a commitment to their true account balance Balance;. This is shown in
Step (3) and is a simple calculation.

The other two verification steps, (4) and (5), can be carried out by any party—we assume a public auditor
will do so on behalf of most customers, so that individuals will typically not verify the entire proof (though
they are free do to so). We discuss the cost of verifying the entire proof further in Section 10.

"'The protocol of [6] can be made to work without a trusted setup, but the resulting protocol is considerably less efficient.
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& runs Protocol 1 to verifiably generate a commitment Zassets to its total assets.
£ runs Run Protocol 2 to verifiably generate a commitment Zyiapilities t0 its total assets and a list LiabList of its liabilities.

—1
£ computes Zpssets * ZLiabilities = Zpssets—Liabilities-

-

& proves in zero-knowledge that Zassets—Liabilities 1S @ commitment to the value 0.

Protocol 3: Complete privacy-preserving proof of solvency

5.1.1 Extended customer verification

One simple extension to the Provisions proof of liabilities is to take the pairs of commitments (CID;, z;)
to each user’s identity and balance and arrange them as the leaves of a Merkle tree. Similar to the Maxwell
protocol, each internal node of the tree will contain a hash of its two children and a commitment to the
sum of their balances. This would enable each user to verify independently that their balance is included
in Zyiapilities by following their path to the root, checking at each node that the committed balance is the
product of its two child nodes’ committed balances.

In the Maxwell protocol, the user observes the balance in each sibling node on their path to the root to
verify that no negative balances have been included. To achieve the same property with Provisions, a range
proof must be given for each sibling node’s balance to ensure that it is a small positive number. Thus, for
each of the log, c nodes on the user’s path to the root they must verify one hash, one product of Pedersen
commitments and one range proof. Based on our implementation in Section 10, this would lead to per-user
proofs of several hundred kB in size for a large exchange.

Because the proof of assets in Provisions cannot be similarly divided on a per-user basis, verifying
the proof of solvency would still require a third party verifier for most users. Generating this tree would
double the proof-generation time for the exchange, so we leave it as an optional extension. However, if
the exchange implemented a simpler, non-privacy-preserving proof of assets (such as moving money on the
blockchain) this extension would allow efficient per-verification of the entire proof of solvency comparable
to the Maxwell protocol without assuming any third-party verifiers.

6 Proof of solvency

Protocol 3 specifies how £ can complete the proof of solvency given commitments to total assets and liabili-
ties from Protocols 1 and 2. The proof that Zassets—Liabilities 1S @ commitment to O (line 4) is a simple Schnorr
ZK proof of knowledge of the discrete log of Zassets_Liabilities tO the base h, since Zassets—Liabilities = gohk
for a value k known to the exchange and if Zascets—Liabilities WEre a commitment to any other value then
computing its discrete log to the base h would reveal the discrete log of h relative to g.

Variation for exchanges with a surplus If the exchange is actually running a surplus (total assets are
greater than total liabilities), this can easily be handled with a simple modification—the exchange can create
a commitment to its surplus, Zs,plus, and apply the same range proof used for customer balances to prove
that this is a small positive number. It then replaces line 3 in Protocol 3 with:

—1 —1
Zpssets * LLiabilities  * ZSurplus
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This approach reveals that a surplus exists. The exchange can also prove the magnitude of its surplus if
desired by opening the commitment Zs,plus. Alternatively, to hide even the existence of any surplus, the
exchange could simply move its surplus into a separate address which is not included in the addresses S
used in its proof of assets, or include the value of the surplus in a number of fake customers’ accounts which
will add to its apparent liabilities.

Variation for fractional-reserve exchanges Fractional reserve banking, in which an exchange promises
to keep assets equal to only a fraction p of its total liabilities instead of all of them, has been frowned upon
by many in the Bitcoin community and not seen significant deployment. However if this approach becomes
more popular in the future, it is easy to modify Provisions to handle this case by modifying Protocol 3 to
commit to a modified balance f;(Balance;) instead of the customer’s true balance Balance;. Each user
can then check during verification that f; was computed correctly on their true balance. Simple fractional
reserves could be implemented by defining f;(x) = p - x for all users. It would also be straightforward
to define f;(x) = p; -  with a different p; for each user if, for example, some users’ accounts are fully-
guaranteed (p; = 1) while others are only fractionally-guaranteed (p; < 1). Arbitrary other functions are
possible, with a natural example from traditional finance being guaranteeing a user’s assets up to some
maximum value.

Finally, an exchange can also prove that it is running a surplus of proportion p by setting f;(z) =
(1 + p) - x, with a “fractional surplus” effectively being the inverse of a fractional reserve.

7 Proof of non-collusion

Recall from Section 2.3.2 that the privacy guarantees of Provisions introduce the risk that a cabal of insol-
vent exchanges colluding by covering each exchanges’ individual liabilities with their collective assets. In
effect, the assets of a single Bitcoin address can be used in the proof of solvency for multiple exchanges.
This can be done by having the exchanges contribute to a set of joint NIZKPs of their keys (e.g., using
divertable ZK [1]).

The simplest defense is for each exchange to choose an anonymity set PK which is smaller than the set
of all public keys and where each exchange’s set is disjoint from the anonymity set of all other exchanges.
This ensures that each exchange is (simultaneously) proving solvency using assets it owns and without
the help of other exchanges. The difficulty with this approach is that there may not be sufficiently many
addresses on the Bitcoin blockchain to accommodate strong privacy for all the exchanges. In the long run,
if exchanges come to collectively control the majority of all bitcoins, we would like them to be able to use
each other’s addresses in their anonymity sets.

Extension to Proof of Assets We can obtain a stronger defense by extending Protocol 1 with a few addi-
tional steps. Our goal is to ensure that the assets of every Bitcoin address are used in at most one proof of
solvency. Recall that the exchange has a set of Bitcoin signing keys PK = {y1, ..., y,} where y; = ¢ for
i € [1,n] . The exchange knows the secret keys z; for some subset of these public keys. We use indicator
variables s1,...,s, € {0,1} such that s;, = 1 when the exchange knows the secret key x; and s; = 0
otherwise.
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Let w € G be an element such that no one knows its discrete-log based g or h.'?> We extend Protocol 1
to force every exchange to also compute the list

L:= {w'ji = w""% forie [l,n]}

which is randomly permuted and published. When s; = 1 the corresponding element in L is w® and when
s; = 0 the corresponding element is simply 1 € G, the identity element. Thus L is a random permutation of
the exchange’s Bitcoin public keys, but using the base w instead of g.

We require the exchange to prove that L is correctly constructed (i.e., a permutation of w®, ... w®")
using a zero-knowledge proof of knowledge derived from a component of the Neff mix [28] and presented
in Appendix D. The proof of knowledge proves that, given two lists Ly, Lo € G", the exchange knows
(z1,t1), ..., (2n, ty) such that

L1 = (g**h', ..., g""h'") and Ly = permute(w?,...,w"").

That is, the proof shows that the list Lo is a permutation, unblinding and base change of the list L. The list
L, is the list of commitments ([1, ... ,[,) generated in Protocol 1. This Neff-like proof thus proves that the
published list L is constructed correctly. It is a simple and efficient proof requiring about 8n elements in Z,,
as explained in Appendix D.

We show below that the list L reveals no information about the £’s Bitcoin addresses beyond the number
of addresses v controlled by £. Note that v is not revealed by the basic protocol (Protocol 1). We’ll return to
the implications of making this information public in Section 9.1 but this is one reason (in addition to added
complexity) why we present this as an optional protocol extension.

Now, suppose two exchanges collude and use the same Bitcoin address y = ¢g* in their proof of solvency.
Then w” will appear in the L list of both exchanges. In other words, the L lists of these two exchanges will
have a non-empty intersection.

Since every exchange is required to publish its list L, an auditor can check that these lists are mutually
disjoint (ignoring the elements 1 € ). If so, then the auditor is assured that every Bitcoin address is used
in at most one proof of solvency and this holds even if all the exchanges use the same anonymity set PK.

An important security requirement is that all exchanges run the extension at the same time—barring this,
a simple attack is for exchanges to move bitcoins from one address to another in between runs of the protocol
so that the same funds can be used but with a different value for w® = w%% in each L (since z; will have
changed). Fortunately, the blockchain already provides an easy method of synchronization. Exchanges
simply need to agree on a common block number (say, every 240" block to run the protocol daily) and all
run the protocol based on the state of the blockchain up to that block. No further synchronization is required;
all exchanges can run the protocol and publish their proofs independently and any assets used by more than
one exchange will be detectable.

It remains to argue that the list L reveals no information about the exchange’s set of Bitcoin addresses
beyond its size v. This follows directly from the Decision Diffie-Hellman (DDH) assumption which is
believed to hold in the secp256k1 group. DDH states that given the tuple (g, w, w?), the quantity g is
computationally indistinguishable from a random element of GG. Therefore, given the list L it is not possible
to distinguish the n-bit string (s1, ..., sy) € {0, 1}" from a random string of the same weight.

12Just as we discussed for generating h in Section 3.1, w can be chosen by hashing a specified string.
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8 Security definition & proof

We now present a general (not specific to Provisions) definition of a privacy-preserving proof of solvency.
We say a function v(k) is negligible if for all positive polynomials p(-), there is a sufficiently large & such
that v(k) < 1/p(k).

Let A and A’ denote mappings (y = g*) — bal(y) where A = A’, y is the public key corresponding to
a Bitcoin address with private key x and bal(y) is the amount of currency, or assets, observably spendable
by this key on the blockchain.

Let £ denote a mapping ID — ¢ where / is the amount of currency, or liabilities, owed by the exchange
to each user identified by the unique identity ID.

Definition 1 (Valid Pair). We say that A and L are a valid pair with respect to a positive integer MaxBTC
iff VID € L,

1. Y yea Alyl = Zipes LIID] = 0 and

2. 0 < L[ID] < MaxBTC

Consider an interactive protocol ProveSolvency run between an exchange £ and user I/ such that
1. outputgrovesolvency(lk, MaxBTC, A, L, A") = ¢

2. output] "Y1 MaxBTC, A',ID, £) € {ACCEPT, REJECT}

For brevity, we refer to these as outg and out;, respectively.

Definition 2 (Privacy-Preserving Proof of Solvency). A privacy-preserving proof of solvency is a prob-
abilistic polynomial-time interactive protocol ProveSolvency, with inputs/outputs as above, such that the
following properties hold:

1. Correctness. If A and L are a valid pair and L[ID] = {, then Pr[outyy = ACCEPT] = 1.

2. Soundness. If A and L are instead not a valid pair, or if L[ID] # {, then Pr{outy; = REJECT] >
1 —v(k).

3. Ownership. For all valid pairs A and L, if Pr[outy = ACCEPT| = 1, then the exchange must have
‘known’ the private keys associated with the public keys in A; i.e., there exists an extractor that, given
A, L, and rewindable black-box access to £, can produce x for all y € A.

4. Privacy. A potentially dishonest user interacting with an honest exchange cannot learn anything about
a valid pair A and L beyond its validity and L[ID] (and possibly |A| and |L|); i.e., even a cheating
user cannot distinguish between an interaction using the real pair A and L and any other (equally
sized) valid pair A and L such that L[ID] = L[ID].

We prove the following theorem in Appendix E:

Theorem 3. Provisions, as specified in Protocol 3, is a privacy-preserving proof of solvency.
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9 Security discussion

9.1 Anonymity sets

If the anti-collusion protocol extension of Section 7 is used, then the number of Bitcoin addresses v con-
trolled by the exchange is revealed as well as the size of the anonymity set n = |PK| (which includes the
v addresses). For efficiency reasons, exchanges may opt to use smaller anonymity sets than the set of all
public keys on the blockchain; in particular, if the number of keys grows unexpectedly in the future. In such
a case, the exchange must be aware that this might leak some meaningful information about what £’s total
assets are.

Specifically, the adversary can determine that £’s assets consist of one of the (Z) subsets of the
anonymity set PK. We remark that £ can easily control n and can also control v (by splitting accounts
up or by padding v with zero balance accounts). For practical instances, (Z) grows quickly—e.g., v = 25
and ;1 = 250 already yields ~ 2! candidates. That said, we have no idea what types of external information
might be useful for eliminating unlikely or impossible totals from this set (e.g., the adversary’s corruption of
customers may provides them with a lower bound on the total assets), or for whittling n down by eliminating
addresses known or suspected not to be controlled by the exchange. Research on deanonymizing Bitcoin
addresses, e.g., through clustering and reidentification [24], has demonstrated that Bitcoin’s anonymity is
limited (see [5] for a survey).

If an exchange conducts proofs of solvency on a regular basis (or more than once), each anonymity
set should be based closely on the anonymity set used previously—choosing independent anonymity sets
could reveal the exchange’s addresses by intersecting the sets. Exchanges can remove addresses from their
anonymity set if the criteria for doing so is independent of whether the exchange owns the address or not.
For example, it might remove addresses once the balance is under a certain threshold. However, generally,
anonymity sets should grow over time with new addresses (some owned by the exchange and some as cover)
being added to the set.

We leave the process of developing and analyzing a heuristic for forming an anonymity set (in terms of
size of n and v and the distribution of amounts across the v accounts) as future work. For the current state
of Bitcoin at the time of writing, we show in Section 10 that it is reasonable for all exchanges to choose an
anonymity set equal to most available accounts, sieving out tiny “dust” accounts.

9.2 User Verification

A proof of solvency enables user verification, but it does not guarantee that all users actually perform the
verification. Consider a malicious £ that does not correctly include some set of users accounts—by either
omitting them or zeroing their balances. Assume the exchange has U users, F' (for fraudulent) entries,
and that a random subset A < U of users choose to audit the correctness of LiabList. In this case, the
probability that an adversary will go undetected is (UZF ) / (Z), which is closely bounded from above by
min[(1—A/U)F, (1—F/U)4] (cf. the probability of a malicious election authority being caught modifying
ballot receipts in a cryptographic voting system [11]). This probability decreases close-to-exponentially in
F and A. Due to the approximation, we conservatively conclude the probability of being caught is high,
instead of overwhelming.

Next, one might question the assumption that each customer is equally likely to verify LiabList. How-
ever, it is reasonable that the distribution skews in the direction of customers with high balances (and thus
more at stake) being more likely to check. This is actually beneficial, because the probability of catching a
malicious exchange does not depend on the amount of bitcoin zeroed out. In other words, zeroing out the
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largest account is equivalent to zeroing out the smallest in terms of being caught, yet the former action better
benefits the adversary’s goal of lowering its liabilities.

We also note that Provisions as described does not provide dispute resolution. If a user finds their
account missing or balance incorrect, they do not have sufficient cryptographic evidence that this is the
case [21]. The issue appears unsolvable cryptographically. Recall that the primary motivation for users
keeping funds with an exchange is to avoid needing to remember long-term cryptographic secrets, therefore
exchanges must be able to execute user orders and change their balance without cryptographic authentication
from the user (e.g., password authentication). Resolving this will likely require legal regulation. Users who
dislike an exchange may also falsely claim that verification of their accounts failed, and it is not possible to
judge if the user or the exchange is correct in this case based on a Provisions transcript alone.

Lastly, we note that if a user does verify their account, they should use a verification tool other than one
provided by the exchange itself; such a tool could be automated to increase participation. All of the issues
discussed in this remark deserve followup work to ensure that Provisions is implemented in practice in such
a way that users are likely to perform auditing and to do so correctly.

9.3 Access to private keys

One important practical consideration with Provisions is that it requires computation using private keys
which exchanges should, by best practice, protect very carefully. These keys might, for example, be kept
in cold storage in an airgapped hardware security module (HSMs) or even kept on paper in a secure vault.
Performing regular Provisions proofs might therefore impact security practices at exchanges. This problem
is inherent to any cryptographic proof of assets. If the proof is conducted at a regularly scheduled time, this
can be integrated with access control practices using human intervention to access the private keys.

Each private key is needed for an addition in Step (1d) of Protocol 1. This presents a challenge in
that some HSMs only support an API to perform a complete ECDSA signature with the private key and
do not support an isolated addition with the key. Exchanges interested in implementing Provisions might
need to carefully consider if they are using HSMs with a rich enough API to enable the proof-of-assets
computation. Alternatively, exchanges could request their HSM providers to implement the required API.
This feature could be a way for HSMs providers to differentiate themselves from the competition. An
interesting challenge for future research is to design a proof-of-assets protocol that is compatible with a
device that only performs complete ECDSA signatures.

The fact that Provisions only requires an addition with the private key also provides an opportunity:
while implementing threshold ECDSA (or DSA in general) is quite challenging, it is straightforward to
create additive key shares that support private key addition in a threshold fashion. This would enable an
exchange implementing Provisions to distribute key shares to multiple servers (or HSMs) which must
collaborate to compute a Provisions proof.

10 Implementation

10.1 Asymptotic performance

Provisions scales linearly in proof size, construction and verification time with respect to its inputs: the
proof of assets scales with the size of the anonymity set and the proof of liabilities scales with the number of
customer accounts. The final proof of solvency given an encryption of the total assets and an encryption of
the total liabilities is constant and in practice is negligible. All of the linear parts of the protocol can be run
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in parallel and require only associative aggregations to compute homomorphic sums, meaning the protocol
is straightforward to parallelize.

Specifically the proof of assets is linear in n, the number of public keys in the anonymity set, regardless
of the size of S, the total number of accounts actually owned by &, requiring 10n integers from Zj in total.
The proof of liabilities is linear with respect to the number of customers c. It is dominated by m + 1 elements
from Z, used to commit to each bit of each customer’s balance, where m = [lg, MaxBTC]| = 51. If needed,
an exchange could slightly reduce proof sizes by capping the size of assets below or reducing precision. For
example, with m = 32 the exchange could still include accounts worth up to US$1 billion with precision to
the nearest penny. However, we’ll assume full precision is desired in our implementation.

Full verification of the protocol requires approximately equal time to the construction of the proof. For
customers opting to only validate their own balance’s correct inclusion in the proof and trust a third party
to run the full verification, verification is much simpler, the customer to check their CID value with a single
hash and check that y; is a correct commitment their balance which requires only m + 2 group operations.

10.2 Incremental updates

As described in Section 1 the protocol is intended to be run often (e.g. daily) to give continued proof of
solvency. A natural question is whether it is possible to update the proof incrementally. We will consider
updates to the anonymity set, to the assets proof and to the liabilities proof separately.

The full set of addresses (anonymity set + owned addresses) used in the proof is public. As such any
newly created addresses by the exchange need to be published. To hide these new addresses it is important
to additionally add addresses to the anonymity set. As with the anonymity set in general and discussed in
Section 9.1 it is important to choose in such a way that the actual addresses are indistinguishable from it. A
proper implementation would for example add addresses deterministically (e.g. all addresses with balances
over z bitcoin).

The asset proof is almost perfectly separable, in that there is a separate and independent component for
each address in the full set of addresses. The components for new addresses and addresses with changed
balance need to be updated. However, it is not necessary to update the components of all other addresses.
This is especially useful for cold addresses, which do not have a private key easily accessible. The set
of addresses which are new or have changed balances is public on the blockchain anyways and thus no
additional information is leaked.

The liabilities proof mainly consists of a commitment to each customer’s balance and a proof that said
balance is within a range. For all new users and users whose balance changed the commitment the proof
needs to be redone. For the other users it is not technically necessary to redo the proof. However, not
changing the proofs for customers whose balance remained unchanged will leak how many users were
actively using their account between the two proofs. If the complete proof were redone then this information
would remain private. If an exchange were to accept this privacy leak it could drastically reduce the size of
the proof updates.

10.3 Practical parameter sizes

An exchange could achieve optimum anonymity by choosing the anonymity set PK to be the entire set
of unclaimed transaction outputs (called the UTXO set) which represents all potentially active Bitcoin ac-
counts. The size of the UTXO set has steadily increased throughout Bitcoin’s history [5] and at the time
of this writing contains approximately 17M addresses. However, the vast majority of these are “dust” ad-
dresses holding only a tiny value. As of October 2015, there are roughly 1.3 Million Addresses with more

20



than 0.01 BTC, which collectively control 99.97% of all bitcoin.!3 As discussed in Section 4.2, some of
these addresses are unusable for the protocol because they do not have public keys available (i.e., they are
pay-to-pub-key-hash addresses with only a hash of the public key visible in the blockchain), others have
questionable anonymity value as they have never been moved since being mined and exchanges are not
expected to be mining their own bitcoin directly. Out of these addresses roughly 431,000 have performed a
send action and are thus candidates for the anonymity set. Consequently we tested our implementation with
anonymity sets up to 500,000.

On the proof-of-liabilities side, Coinbase is thought to be one the largest exchanges and currently claims
roughly 2 million customers.'* We take as our goal supporting this number of users.

10.4 Implementation & performance tests

To test the performance of our protocol in practice we created a prototype implementation of our protocol
in Java 1.8. All cryptographic operations are performed using BouncyCastle," a standard cryptographic
library for Java which is also used by the popular bitcoinj implementation of Bitcoin in Java. We performed
tests on a commodity server with 2 E5-2680 v2 Xenon processors and 128GB RAM. The max heap size of
the JVM was set to the default 256MB. Our implementation assumes a previously downloaded and verified
blockchain, to enable efficient balance lookups and selection of an appropriate anonymity set.

Our simulations confirm that Provisions should be practical even for large exchanges desiring strong
anonymity and full precision to represent customer accounts. Figure 2 shows proof sizes and computation
times for Protocol 1, the proof of assets, varying the anonymity set size n from 10 to 500,000. Figure 3 shows
proof sizes and computation times for Protocol 2, the proof of liabilities, varying the number of customers ¢
from 1,000 to 2,000,000. We tested with m = 51, supporting full precision of account balances. Reducing
m would lead to proportional reductions in proof sizes and construction times. Note that, given realistic
parameters today, it appears that the proof of liabilities is the more expensive protocol today for a large
exchange.

We report numbers without the protocol extension from Section 7 to ensure assets are not shared between
colluding exchanges executing the protocol contemporaneously. This extension requires publishing the
element w?i plus eight additional values per address which increases the size and construction time of the
proof of assets by about ~ 80%. Because the proof of liabilities is likely much larger, this extension makes
only a minor impact on performance.

We omit performance figures for Protocol 3 as this protocol is constant size and negligible compared to
Protocols 1 and 2. Similarly, verification time for individual clients depends only m and not the anonymity
set or number of other customers. In our implementation it took fewer than 10 ms.

11 Open research challenges

In this section we briefly summarize the open research challenges for proofs of solvency:

e Multisig addresses Provisions does not enable multisig addresses (Section 4.2). In principle, the
proof of assets of Section 4.1 can be extended to prove control of the required majority of keys in a
multisig address (assuming they are all public) without substantially new cryptographic techniques.

Bhttps://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
“https://www.coinbase.com/about
Bhttps://www.bouncycastle.org/
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¢ Non-public public keys Provisions does not enable using addresses in the anonymity set for which
the public keys are unknown. As discussed in Section 4.2, this prevents using pay-to-pubkey-hash
and pay-to-script-hash addresses which are common in Bitcoin. Removing this restriction requires
proving knowledge of a hash preimage which will necessitate more powerful proof techniques such
as zk-SNARKSs.

e Arbitrary scripts Bitcoin enables arbitrary scripts for transaction redemption. The most general
framework for solvency proofs would enable zero-knowledge proofs of the ability to satisfy any re-
demption script. In principle this could be achieved by compiling an interpreter for Bitcoin scripts in
a general-purpose proof system such as zk-SNARKSs. The practical value of this may be low as most
Bitcoin scripts conform to one of a small number of templates.

o Zerocash Zerocash [3] is a proposed cryptocurrency with strong privacy properties. All transactions
are zk-SNARKS, revealing no information about senders, recipients, or value. Proofs of solvency for
Zerocash would require a substantially different proof of assets. Using zk-SNARKSs is the obvious
approach since they are already required for the currency. It might be valuable to combine the trusted
setup for the currency itself with a trusted setup to enable solvency proofs.

o Velocity limits It might be considered valuable for an exchange to demonstrate stability by proving
that some portion of its holdings have not been transferred for some period of time. The “age” of each
UTXO in Bitcoin is publicly visible, so it would be possible to add this parameter to the proof-of-
assets and compute a weighted sum of assets based on age.

o Compatibility with ECDSA-only HSMs As discussed in Section 9.3, some exchanges might keep
their private keys in HSMs which only export ECDSA signatures and do not enable the raw mul-
tiplication needed for the Provisions proof of assets. Designing a new proof of assets around this
limitation is an interesting challenge.

12 Concluding Remarks
Stu Feldman has outlined a roadmap for technical maturity (as quoted in [18]):

You have a good idea;

You can make your idea work;

You can convince a (gullible) friend to try it;
People stop asking why you are doing it; and
Other people are asked why they are not doing it.

MY

Given the shaky track record of Bitcoin exchanges, the onus upon an exchange to perform some kind
of audit is nearing level 5. However, cryptographic solvency proofs, like the Maxwell protocol, are lagging
behind around level 3. Our belief is that the privacy implications of Maxwell are hindering it—there are
good reasons for an exchange not to reveal which addresses it controls, the scale of its total holdings,
or potentially leak information about large customers’ account sizes. Provisions removes these barriers.
While cryptographic proofs of solvency still have inherent limits, namely that control of an address’ key
at present does not guarantee the future ability to use that key to refund customers, we believe that with
Provisions there are no longer good reasons for an exchange not to provide regular proofs of solvency to
increase customer confidence.
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A Zero-Knowledge

For completeness, we include the definition of an honest-verifier zero-knowledge proof of knowledge
(HVZKPK) for X-protocols.

Definition 3. Given a relation R between instance x and (private) witness w, then protocol T between
prover P and verifier V is special-honest zero-knowledge if the following hold:

e Completeness: If P and V are honest, then V accepts for all (x,w) € R.

e Honest verifier zero-knowledge: There exists a polynomial time simulator S that can compute w
given x and a challenge can create accepting transcripts that are indistinguishable from a transcripts
generated by an honest P and W .

o Proof of knowledge: There exists a polynomial time extractor E that given two accepting transcripts
that differ in challenges but have the same initial message, outputs a witness w.

B ZK for Binary Commitment

Protocol 4 is a standard zero-knowledge proof of knowledge that for a given Pedersen commitment (g, h, [ =
g*hY) the prover £ knows x € {0,1} and y € Z,. The protocol is based on [15] and also discussed in [6,
Sec. 1.2.1]. The protocol can be made non-interactive using the Fiat-Shamir heuristic. The proof is just four
elements in Z,, namely (c, c1,79,71).

Verifier’s input: g, h,l € G
Prover’s input: « € {0,1} and y € Z; s.t. [ = g*hY

1. & chooses ug, u1, cs & Z4 and sends

ag = huog—mcjc’ a; = hulg(l—x)Cf

2. The verifier responds with challenge c & ZLq

3. Ecomputes ¢; =xz-(c—cp)+ (1 —x)-cf
and responds with
¢, ro=up+(c—c1)y, rm=ur+ci-y

4. The verifier accepts if
W L ag() and K" L ay(lg™H*

Protocol 4: Knowledge of Binary Number Protocol

For completeness, security is shown in Claims B.1, B.2, and B.3 below.

Claim B.1. (Completeness) If P and a verifier V follow protocol 4 on input (g, h,l) and private input (z,y)
where x € {0, 1} then V always accepts.
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Proof. Suppose that £ knows x and z = 0 v = 1. Then £ can always compute ag, ai, 9,1 and c;. Let

¢t = ¢ — cy. If £ follows the protocol then an honest verifier will find that:
ao(lg)c—q _ huog—zcjr (gmhy)c—cl
— pUo h(c—cl)yg—szga:cg—clx
— U0 h(c—cl)yg—chc g:ccg—:cct
(because z? =z < z€0,1)
— huo h(c—cl)yg:zr(c—c.f—ct)

(because ¢ = c¢f + ¢¢)
_ hUOh(ch)y — hro

and

al(lg_l)cl _ hmg(l—x)Cf (grhyg—l):cct+(1_gc)cf
= pwt hc1yg(1—x)cjcgmctg—a:ctg—(l—z)cf

(because 2

= hUIHCY — 1

=z < x€0,1)

and thus accept the transcript.

O

Claim B.2. (proof of knowledge) There exists a polynomial-time algorithm (extractor E) for Protocol 4

that extracts x € {0, 1} and y € Zy such that | = g"hV.

1. Run P* to obtain ag, a1

2. Send ¢ < Z to P*

3. P* outputs ¢y, 79, 1 such that h™ = aqol®~°t and h"™* = a;(lg~1)=
4. Rewind P* to right after step 1 of the protocol.

5. Send ¢ & 7Z,\{c} to P*

6. P* will output ¢}, 74, 7 such that h"0 = aol =1 and h't = a;(lg~")%

7. If ¢} # c1 then output y =

ri—r] : ro—rg
e and x = 1 otherwise output y = - —
1

andz =0

Figure 4: Extractor for Binary Proof

Proof. An extractor is given in Figure 4 that extracts y and either x = 1 or x = 0 from any efficient prover

P”* that convinces the verifier.
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Claim B.3. (Honest Verifier Zero-knowledge) There exists a probabilistic polynomial-time simulator S
that, given (g, h,l) and random challenge ¢, can produce a transcript that has the same distribution as a
transcript between P and an honest verifier.

1. Choose c1, 79 and r1 uniformly at random from Z,
2. Letag = h™ /It and a; = h" /(lg~ 1)

3. Publish (ag,as;c, c1;70,71)

Figure 5: Simulator for Binary Proof

Proof. Finally, we prove that the protocol is honest-verifier zero-knowledge, i.e. there exists a simulator
that, given the statement | = ¢g”hY, x € {0,1} and a uniformly random challenge ¢, can create transcripts
that come from the same distribution as transcripts between £ an an honest verifier. The simulator is given
in Figure 5.

Given a uniformly random challenge c, both ag and a; are distributed uniformly at random in G, subject
to the verification conditions. Thus the simulator produces transcripts from the same distribution as an
honest verifier. 0

C Proof of assets is HVZKPK

Theorem 1 states that Protocol 1 is an honest-verifier zero-knowledge argument of knowledge. The proof
follows from the following three claims. We denote the prover by P and verifier by V.

Claim C.1. (Completeness) If P and V follow protocol 1 on input (g, h,y;,b;, i, p;) and private input
(s; €{0,1}, v, ti,Z;), then V always accepts.

Proof. Suppose £ knows v; , s; and ¢;. By assumption £ followed the protocol and all p; and [; are, thus,

well formed. P can then for any random ug') and challenges ¢; compute all responses r(.). Completeness
follows by a simple calculation. O

Claim C.2. (Argument of knowledge) Let P* be an efficient prover. There exists a polynomial-time algo-
rithm (extractor E) for Protocol 1 such that for each i € [1,n] and any pair of accepting transcripts with

O and ¢ # ¢, P* can output (s; € {0,1}, v;, t;, &;) satisfying conditions (1), (3) and (5) for all

the same a;

i€[1,n].

Proof. We show in Figure 6 that there exists an extractor F for all efficient provers P* that convince the
verifier. Note that

n rs, —7" / 1 n
$i 6, 1 T —1! N ol
H(bl TSR UZ)CZ G = Hpi = Zpssets
i=1 i=1
!
Ts; ~Ts; 114, —1) o
<yz i S'Lh t ti)cz [/ lz



1. Forie [1,n]
(a) Run P* to obtain agl), az( , Q

$ *
(b) Send ¢; < Zg4 to P
(c) P* will output 7y, r¢,,74,, 70, such that

s,
3

v Ci (1)
h'™i = piia;

i

b

y:éz Bt = ll?ia@)

3
g R = lfiaz(?’)

(d) Rewind P* to right after step 1b of the protocol.
$ *
(e) Send ¢, — Z,\{c;} to P

(f) P* will output 5, 74,75 7, such that

.TA?Z" Vi

oo
b,""h™i =p

/
Ci
K3

o)

g, = 1 0

)

gT%i BTt — lf/a@

)

/
Tog =T rs. —1" re. —1h rs. —rh
C oy — i Lo % sy Lo Tt r S R ]
(g) Output: v; e mod ¢, s; e mod ¢, t; e mod ¢, ; o=C

mod ¢

Figure 6: Extractor for Proof of Assets protocol

and )
P / —
(gmi s, h”i_rti)%‘*cg — li

Since ¢; # ¢; we can conclude that E gives valid outputs and thus that the protocol is sound.
Additionally if the Protocol 4 was run on p;, the extractor described in B.2 can extract a binary s; and
v) € Zq. Since P* is efficient, the binding property of Pedersen commitments ensures that s; = s, and
/
v = Uj. O

Claim C.3. (Honest Verifier Zero-knowledge) There exists a probabilistic polynomial-time simulator S
that, given (g, h, y;, bal(y;), l;, p; and random challenge c; for each i € [1,n], can produce a transcript
that has the same distribution as a transcript between P and an honest verifier.

Proof. A simulator is given in Figure 7. Note that both the original a’s as well as the simulated a’s are
distributed uniformly at random in G given that the challenge c¢; was chosen uniformly at random. Given
uniformly chosen u’s the responses in the protocol are uniform in Z,. The simulated responses are uniformly
drawn. The probability of a simulated transcript thus equals the probability of an actual transcript. O
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D Proof of permutation

Our extension in Section 7 requires a way for the exchange to prove that, given two lists L1, Lo € G™, the list
Ly e G™ is a permutation, unblinding and base change of the list L; € G™. More precisely, for g, h,w € G
and L1, Ly € G™ the exchange needs to prove knowledge of (z1,¢1), ..., (zn, t,) such that

Ly = (¢”*h',...,g""h!") and Lo = permute(w™,...,w™).

For convenience, we slightly re-write this statement as follows: given g, h, w, L1, Lo the exchange must
prove knowledge of (z1,t1,y1),- .., (Zn, tn, yn) such that

Li = (¢"'h", ... g*"h!"), Lo = (w¥,...,w¥"), and

(y1,-.-,Yn) is a permutation of (z1,...,x,).

(N

The protocol to do so is based on an idea used in the Neff mix net [28]. It makes use of the following
idea: define two polynomials

pi(r) := H(r — ;) and  po(r) := H(r — Yi)-
i=1

i=1
If (y1,...,Yyn) is a permutation of (x1,...,xz,) then p; and po are the exact same polynomial. Otherwise,
they are different polynomials of degree-n and therefore agree on at most n points. To test that YV :=
(Y1, --.,Yn) is a permutation of X := (z1,...,xy) the verifier can choose a random point r € Z, and check

that p1 (1) = p2(r). If equality holds the verifier can safely conclude that the lists are the same. To see why,
observe that if Y is not a permutation of X then the only way that the verifier would be fooled is if » happens
to be one of the points where p; agrees with py. Since that are at most n such points, the probability that r
is one of them is at most n/q, which is negligible.

To turn this idea into an argument of knowledge for (7) the verifier first sends a random r € Z, to the
exchange. The exchange chooses a random s,, € Z, and publishes the quantities

A, =g Wpsn and B, = wP™

along with a proof that (1) both quantities are constructed correctly and (2) p1(r) = po(r). The latter
proof is a standard Chaum-Pedersen proof of representation, namely that the exchange knows two values
p, Sp € Zg such that

A, =g¢g"h** and B, = w. )

1. Foreachi € [1,n]

(a) Choose r,,7¢,,74,, Ty, and the challenge ¢; uniformly at random from Z,

(b) Let: agl) = bzsi h'vip, “, o = yzsi Rl a® = gl

(3 (3

(¢) Publish (agl), agz), agg); Ci Ts;sTt;s Ty T, ) s the transcript.

Figure 7: Simulator for Proof of Assets protocol

30



Proving that A,, and B,, are constructed correctly requires n additional sub-proofs. Let s; := —t; and
choose random so, . . ., s, € Z,. The exchange publishes the 2n quantities

Ay = gllimalr=2) U psi and B 1= gl Tima 7w

Notice that A,, and B,, are the same as their definition in (8).

The verifier can easily check that A and B; are constructed correctly by checking that A; = ¢"/L1[1]
and By = w"/Ls[1].

Now, suppose that for some ¢ > 1 the verifier is convinced that A;, B; are constructed correctly. Con-
vincing the verifier that A; 1, B;41 are constructed correctly amounts to proving the following facts:

1. Suppose A; is a Pedersen commitment to a number a; € Z, and L1[i + 1] is a Pedersen commitment
to a number ;41 € Zq. Then A; 1 is a Pedersen commitment to a number a;(r — zit1).

2. (w, La[i+ 1], B;, (B;)"/B;41) is a Diffie-Hellman tuple.

The first can be done using a protocol of Cramer and Damgard [14, Lemma 2.6] and the second is a Chaum-
Pedersen proof [12]. They amount to proving knowledge of six quantities

Ay Siy Tiy1, tit1,Vix1,0; € Zy 9
such that
Ai :gai . hsi
Li[i 4 1] =g®+1 - i+t
Aiv1 =(A)" - Li[i + 1]7% - hvitt (= gai(r—mi+1)h(...))
BZ‘ =wbi
Biy1 =(B;)" - Lo[i + 1] 7% (= whilr—vir)

Proving knowledge of such six quantities is a standard Chaum-Pedersen proof of knowledge. Note that an
honest exchange would use the following value for v; 1 in the proof to ensure that A; 1 = g®*+1 - h%i+1:

Vit1 = Sit+1 — T'S; + Qiliy1

We see that for each i € [1,n] the exchange must publish A;, B; plus six additional elements in Z,
(the length of the Chaum-Pedersen proof for proving knowledge of the elements in (9), after applying the
Fiat-Shamir heuristic).

This completes our description of the protocol for ensuring that the list Lo is a permutation, unblinding
and base change of the list L.

To conclude this section we note that this argument of knowledge can be made shorter if the lists I.; and
Lo are first mapped to a pairing-friendly group (the mapping is done by proving equivalence between the
pairing-friendly group elements and the original lists L; and L9). We did not pursue this optimization here
since we want to keep all arithmetic in the standard Bitcoin group to make the scheme more acceptable to
the Bitcoin community.
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E Proof of Solvency

Recall that in the definition of a privacy-preserving proof of solvency (Definition 2), A denotes a list of
ordered pairs (y; = g7, bal(y;)) where y; is the public key corresponding to a Bitcoin address with private
key x; and bal(y;) is the amount of currency, or assets, observably spendable by this key on the blockchain.
L denotes a list of integers [; (which are taken as the amount of currency, or liabilities, belonging to a set of
pseudonymous users).

Recall Theorem 3:

Theorem 1. Provisions, as specified in Protocol 3, is a privacy-preserving proof of solvency.
Proof. By Definition 2, proofs of the following Claims 1.1-1.5 imply Theorem 3 holds. O

Claim 1.1. (Solvency) Protocol 3 ensures for all i and j:

1. Shal(y) — )15 = 0
2. 0 < bal(y;) < MaxBTC

Proof. Toward proving Condition 1 of Claim 1.1, we note that as a corollary of the special soundness
property of the proof of assets HVZKP captured by Theorem 1, Zagsets is @ commitment to | bal(y;).
Similarly by the special soundness of the proof of liabilities (Theorem 2), Z| japilities iS @ commitment to ) /.
By the property of homomorphic subtraction of Pedersen commitments, the value of Zaggets - Zliabilities
computed in Protocol 3 is ) bal(y;) — >, ;. The exact values of ) bal(y;) and ), I, are extractable and thus
an extractor can determine the truth of bal(y;) — >} /; = 0 for any malicious prover.
Condition 2 of Claim 1.1 is a corollary of the special soundness property of the proof of liabilities
HVZKP captured by Theorem 2.
O

Claim 1.2. (Verification) If user 1Dy, accepts T then l;, € L and ly, is unique to 1Dy, for all k.

Proof. The first condition, I € L, is a corollary of the special soundness property of the proof of liabilities
HVZKP captured by Theorem 2.

The second condition, that [; is unique to 1Dy, follows from the observation that [; is unique to the
commitment CIDy, as they are published together by the exchange. The uniqueness of CIDy per 1Dy is
reduced directly to the binding property of the commitment scheme used to compute CID. In other words,
if [;, was acceptable to user 1D, then either the exchange provided a different transcript that bound I,
to CID;. (which contradicts the property of broadcasting the transcript) or CID;, de-commits to 1D,

(which contradicts the binding property of the commitment).
O

Claim 1.3. (Ownership) Protocol 3 requires the exchange to be able to extract x; for every y; € A

Proof. Claim 1.3 is a corollary of the special soundness property of the proof of assets HVZKP captured by
Theorem 1. O

Claim 1.4. (User Privacy) Protocol 3 ensures for user k, no non-negligible information is learned from T
about (IDjy, lj+) beyond Property 1.
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Proof. The first condition, ID ., of claim 1.4 can be reduced directly to the hiding property of the com-
mitment scheme used to compute CID ;.

The second condition, /;, of claim 1.4 is a corollary of the zero-knowledge property of the proof of
liabilities HVZKP captured by Theorem 2. O

Claim 1.5. (Exchange Privacy) Protocol 3 ensures non-negligible information is learned about A and L
beyond: |A|, |L|, and what is learned through Properties 1-4.

)

Proof. Claim 1.4 is a fairly direct corollary of the zero-knowledge property of: the proof of assets HVZKP
captured by Theorem 1, and the proofs of liabilities HVZKP captured by Theorem 2. This property extends
to Protocol 3 as follows: Having called the simulator for both Zagsets and Z| japilities, @ simulator for Proto-
col 3 computes the value Zagsets - Zliabilities - and simulates it is a commitment to the value 0 using ‘half’
of the simulator in Figure 5 (i.e., ignores r1, c¢; and a; and sets cy = ¢).

]
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