THE SCIENCE OF GUESSING

analyzing an anonymized corpus of 70 million passwords

Joseph Bonneau

jcb82@cl.cam.ac.uk

Computer Laboratory

IEEE Symposium on Security & Privacy \approx Oakland, CA, USA May 23, 2012

Why do password research in 2012?

Compatible Time-Sharing System, MIT 1961

Precisely compute the guessing difficulty of a given population's password distribution

Compare the guessing difficulty of password distributions chosen by different populations

Compare the guessing difficulty of password distributions chosen by different populations

VS.

Compare the guessing difficulty of password distributions chosen by different populations

VS.

Compare the guessing difficulty of password distributions chosen by different populations

Passwo	ord	•••••	
Retype	Password		
		V:	S.
Password	•••••		Strong
Re-type Password	Capitalization matters. U and don't use your name		,

- For a more secure password:
 - Use both letters and numbers
 Add appoint pharacters (queb.)
 - Add special characters (such as @, ?, %)
 - Mix capital and lowercase letters

Compare the guessing difficulty of password distributions chosen by different populations

VS.

Approach #1: Semantic password evaluation

- How long are the passwords?
- Do they look like English words?
- What kind of characters do they contain?

Approach #1: Semantic password evaluation

	94 Character Alphabet		10 char. alphabet		94 char alphabet	
Length Char.	No Checks	Dictionary Rule	Dict. & Comp. Rule			
1	4	-	-	3	3.3	6.6
2	6	-	-	5	6.7	13.2
3	8	-	-	7	10.0	19.8
4	10	14	16	9	13.3	26.3
5	12	17	20	10	16.7	32.9
6	14	20	23	11	20.0	39.5
7	16	22	27	12	23.3	46.1
8	18	24	30	13	26.6	52.7
10	21	26	32	15	33.3	65.9
12	24	28	34	17	40.0	79.0
14	27	30	36	19	46.6	92.2
16	30	32	38	21	53.3	105.4
18	33	34	40	23	59.9	118.5
20	36	36	42	25	66.6	131.7
22	38	38	44	27	73.3	144.7
24	40	40	46	29	79.9	158.0
30	46	46	52	35	99.9	197.2
40	56	56	62	45	133.2	263.4

NIST "entropy" formula

Approach #2: Cracking experiments

Approach #2: Cracking experiments

Methodological problems with password analysis

	semantic	cracking
external validity		✓
no operator bias	✓	
no demographic bias	?	
repeatable	✓	?
easy	✓	?

My approach

- Collect password data on a huge scale
- Compare populations as probability distributions
 - Test hypotheses using different populations

My approach

- Collect password data on a huge scale
- Compare populations as probability distributions
- Test hypotheses using different populations

My approach

- Collect password data on a huge scale
- Compare populations as probability distributions
- Test hypotheses using different populations

Goal #1: collect a massive data set

- with cooperation from Yahoo!
- privacy-preserving collection ©
 - histograms only
- demographic splits collected

- Experiment run May 23–25, 2011
- 69,301,337 unique users
- 42.5% unique
- 328 different predicate functions

Goal #2: model guessing as a probability problem

- Assume perfect knowledge of the distribution \mathcal{X}
- \mathcal{X} has N events (passwords) $x_1, x_2, ...$
- Events have probability $p_1 \ge p_2 \ge ... \ge p_N \ge 0$
- Each user chooses at random $X \stackrel{\mathsf{R}}{\leftarrow} \mathcal{X}$

Question: How hard is it to guess *X*?

Shannon entropy

$$H_1(\mathcal{X}) = -\sum_{i=1}^N p_i \lg p_i$$

Interpretation: Expected number of queries "Is $X \in \mathcal{S}$?" for arbitrary subsets $\mathcal{S} \subseteq \mathcal{X}$ needed to guess X. (Source-Coding Theorem)

Guesswork (guessing entropy)

$$G_1(\mathcal{X}) = E\left[\#_{\mathsf{guesses}}\right] = \sum_{i=1}^N p_i \cdot i$$

Interretation: Expected number of queries "Is $X = x_i$?" for i = 1, 2, ..., N (optimal sequential guessing)

G_1 fails badly for real password distributions

Random 128-bit passwords in the wild at RockYou ($\sim 2^{-20}$)

ed65e09b98bdc70576d6c5f5e2ee38a9 e54d409c55499851aeb25713c1358484 dee489981220f2646eb8b3f412c456d9 c4df8d8e225232227c84d0ed8439428a bd9059497b4af2bb913a8522747af2de b25d6118ffc44b12b014feb81ea68e49 aac71eb7307f4c54b12c92d9bd45575f 9475d62e1f8b13676deab3824492367a 92965710534a9ec4b30f27b1e7f6062a 80f5a0267920942a73693596fe181fb7 76882fb85a1a8c6a83486aba03c031c9 6a60e0e51a3eb2e9fed6a546705de1bf ...

$$\Rightarrow$$
 $G_1(RockYou) > 2^{107}$

Attackers might be happy ignoring the hard values

α -work-factor

$$\mu_{\alpha}(\mathcal{X}) = \min \left\{ \mu \in [1, N] \middle| \sum_{i=1}^{\mu} p_i \ge \alpha \right\}$$

Interretation: Minimal dictionary size to succeed with probability α

α -guesswork

$$G_{\alpha}(\mathcal{X}) = (1 - \lceil \alpha \rceil) \cdot \mu_{\alpha}(\mathcal{X}) + \sum_{i=1}^{\mu_{\alpha}(\mathcal{X})} p_i \cdot i$$

Interretation: Mean number of guesses to succeed with probability α

Guessing curves visualise all possible attacks

More intuitive after converting to bits

More intuitive after converting to bits

Sample size is a major problem for passwords...

Predict our confidence range by bootstrapping

Extrapolation w/ truncated Sichel-Poisson distribution

Goal #3: Analyze Yahoo! passwords

Goal #3: Analyze Yahoo! passwords

Goal #3: Analyze Yahoo! passwords

Demographic trends: nationality

Demographic trends: age

Credit card details make little difference

Password strength meter makes little difference

Demographic summary

- there is no "good group" of users
- differences small but statistically significant
- online attack 6–9 bits $(\tilde{\lambda}_{10})$
- offline attack **15–25** bits $(\tilde{G}_{0.5})$

Surprisingly little language variation

		dictionary							_			
		de	en	es	fr	id	it	ko	pt	zh	vi	global
	de	6.5%	3.3%	2.6%	2.9%	2.2%	2.8%	1.6%	2.1%	2.0%	1.6%	3.5%
	en	4.6%	8.0%	4.2%	4.3%	4.5%	4.3%	3.4%	3.5%	4.4%	3.5%	7.9%
	es	5.0%	5.6%	12.1%	4.6%	4.1%	6.1%	3.1%	6.3%	3.6%	2.9%	6.9%
	fr	4.0%	4.2%	3.4%	10.0%	2.9%	3.2%	2.2%	3.1%	2.7%	2.1%	5.0%
target	id	6.3%	8.7%	6.2%	6.3%	14.9%	6.2%	5.8%	6.0%	6.7%	5.9%	9.3%
fari	it	6.0%	6.3%	6.8%	5.3%	4.6%	14.6%	3.3%	5.7%	4.0%	3.2%	7.2%
	ko	2.0%	2.6%	1.9%	1.8%	2.3%	2.0%	5.8%	2.4%	3.7%	2.2%	2.8%
	pt	3.9%	4.3%	5.8%	3.8%	3.9%	4.4%	3.5%	11.1%	3.9%	2.9%	5.1%
	zh	1.9%	2.4%	1.7%	1.7%	2.0%	2.0%	2.9%	1.8%	4.4%	2.0%	2.9%
	vi	5.7%	7.7%	5.5%	5.8%	6.3%	5.7%	6.0%	5.8%	7.0%	14.3%	7.8%

With 1000 guesses, greatest efficiency loss is only 4.8 (fr/vi)

Joseph Bonneau and Rubin Xu.

Of contraseñas, סיסמאות and 密码: Character encoding issues for web passwords *Web 2.0 Security & Privacy*, 2012.

Comparing password analysis methods

	semantic	cracking	statistical
external validity		✓	?
no operator bias	✓		✓
no demographic bias	?		✓
repeatable	✓	?	✓
easy	✓	?	✓

Comparing password analysis methods

	semantic	cracking	statistical
external validity		✓	?
no operator bias	✓		✓
no demographic bias	?		√
repeatable	✓	?	✓
easy	✓	?	✓
works w/small data	✓	✓	

The picture so far

For more information

my email jcb82@cl.cam.ac.uk

my dissertation Guessing human-chosen secrets

Acknowledgements

Converting metrics to bits

- Find the size of a uniform distribution \mathcal{U}_N with equivalent security
- Easy case:

$$ilde{\mu_{lpha}(\mathcal{X})} = \lg\left(rac{\mu_{lpha}(\mathcal{X})}{\lceil lpha
ceil}
ight)$$

More complicated:

$$ilde{G}_{\!lpha}(\mathcal{X}) = ext{lg}\left[rac{2\cdot \mathcal{G}_{\!lpha}(\mathcal{X})}{\lceil lpha
ceil} - 1
ight] - ext{lg}(2 - \lceil lpha
ceil)$$

Sanity check:

$$ilde{\lambda}_{eta}(\mathcal{U}_{m{N}}) = ilde{\mu}_{lpha}(\mathcal{U}_{m{N}}) = ilde{m{G}}_{lpha}(\mathcal{U}_{m{N}}) = \lg m{N}$$

Sample size is a major problem for passwords...

Poor password implementations

Results from a study of password authentication in the wild:

- 29–40% of websites don't hash passwords during storage
- 41% of websites don't use any encryption for password submission
 - 22% do so incompletely
- 84% of websites don't rate-limit against guessing attacks
- 97% of websites leak usernames to simple

Joseph Bonneau and Sören Preibusch.

The password thicket: technical and market failures in human authentication on the web. Workshop on the Economics of Information Security, 2010.